1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
| import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms
from visdom import Visdom
batch_size=200 learning_rate=0.01 epochs=2
train_loader = torch.utils.data.DataLoader( datasets.MNIST('./mnist data/', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), ])), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./mnist data/', train=False, transform=transforms.Compose([ transforms.ToTensor(), ])), batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self): super(MLP, self).__init__()
self.model = nn.Sequential( nn.Linear(784, 200), nn.LeakyReLU(inplace=True), nn.Linear(200, 200), nn.LeakyReLU(inplace=True), nn.Linear(200, 10), nn.LeakyReLU(inplace=True), )
def forward(self, x): x = self.model(x)
return x
device = torch.device('cuda:0') net = MLP().to(device) optimizer = optim.SGD(net.parameters(), lr=learning_rate) criteon = nn.CrossEntropyLoss().to(device)
viz = Visdom()
viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss')) viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.', legend=['loss', 'acc.'])) global_step = 0
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader): data = data.view(-1, 28*28) data, target = data.to(device), target.to(device)
logits = net(data) loss = criteon(logits, target)
optimizer.zero_grad() loss.backward() optimizer.step()
global_step += 1 viz.line([loss.item()], [global_step], win='train_loss', update='append')
if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()))
test_loss = 0 correct = 0 for data, target in test_loader: data = data.view(-1, 28 * 28) data, target = data.to(device), target.cuda() logits = net(data) test_loss += criteon(logits, target).item()
pred = logits.argmax(dim=1) correct += pred.eq(target).float().sum().item()
viz.line([[test_loss, correct / len(test_loader.dataset)]], [global_step], win='test', update='append') viz.images(data.view(-1, 1, 28, 28), win='x') viz.text(str(pred.detach().cpu().numpy()), win='pred', opts=dict(title='pred'))
test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
|